## Structure Reports

Online

## $N, N^{\prime}$-(Methylenedi- $p$-phenylene)bis(pyridine-2-carboxamide)

ISSN 1600-5368

## Soraia Meghdadi, ${ }^{\text {a }}$ Hamid Reza

 Khavasi ${ }^{\text {b }}$ * and Saeid Nalchigar ${ }^{\text {a }}$${ }^{\text {a }}$ Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran, and ${ }^{\text {b }}$ Department of Chemistry, Shahid Beheshti University, Evin, Tehran 1983963113, Iran

Correspondence e-mail: h-khavasi@sbu.ac.ir

## Key indicators

Single-crystal X-ray study
$T=297 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
$R$ factor $=0.043$
$w R$ factor $=0.103$
Data-to-parameter ratio $=11.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the crystal structure of the title compound, $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$, intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds may be effective in its stabilization.

## Comment

The coordination chemistry of bispyridylamides is extremely rich. Examples of coordination via the pyridine N atoms, the carbonyl O atoms and the amide N atoms of the ligand in a non-, mono-, or bis-deprotonated form are known (Jubert et al., 2002; Amirnasr et al., 2002; Meghdadi et al., 2006) and metal complexes of the ligands have been used extensively to mimic the properties of biologically active systems (Belda \& Moberg, 2005). With control over the ligand properties such as donor density, the type and number of coordination sites has led to a wide variety of resultant structural motifs such as helicates (Piguet et al., 1997; Lessmann \& Horrocks, 2000; Albrecht, 2001). In order to develop further the supramolecular chemistry of bispyridine-amide ligands, we synthesized the title ligand, (I), and report here its crystal structure.

(I)

In the molecule of the title compound, (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). Rings $A$ (N1/C1-C5), $B$ (C7-C12), $C$ (C14-C19) and $D$ (N4/C21-C25) are, of course, planar and the dihedral angles between them are $A / B=6.25$ (4), $A / C=75.40(3), A / D=$ 78.01 (4), $B / C=72.27$ (3), $B / D=74.50(3)$ and $C / D=4.65(3)^{\circ}$.

As can be seen from the packing diagram (Fig. 2), intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) link the molecules and may be effective in the stabilization of the crystal structure. Dipole-dipole and van der Waals interactions are also effective in the molecular packing.

## Experimental

A solution of $4,4^{\prime}$-diaminodiphenylmethane ( $2.97 \mathrm{~g}, 15 \mathrm{mmol}$ ) in pyridine ( 12 ml ) was added to a solution of pyridine-2-carboxylic acid $(3.69 \mathrm{~g}, 30 \mathrm{mmol})$ in pyridine $(20 \mathrm{ml})$. The resulting solution was stirred at $313-318 \mathrm{~K}$ for 10 min , and then triphenyl phosphite ( $30 \mathrm{mmol}, 7.9 \mathrm{ml}$ ) was added dropwise, and the reaction mixture was stirred at $363-373 \mathrm{~K}$ for 4 h , during which time a white precipitate formed. After cooling to room temperature, the reaction mixture was

Received 28 October 2006 Accepted 3 November 2006
left in the hood for 24 h . The white precipitate was filtered off, washed with 20 ml of acetone/water (1:1), and then dried in air. X-ray quality crystals were obtained by slow diffusion of diethyl ether into a dichloromethane solution at room temperature (yield $90.2 \%$; m.p. 501-503 K).

## Crystal data

$$
\begin{aligned}
& \mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \\
& M_{r}=408.45 \\
& \text { Triclinic, } P \overline{1} \\
& a=8.719(3) \AA \AA \\
& b=9.877(3) \AA \\
& c=12.444(4) \AA \\
& \alpha=100.89(2)^{\circ} \\
& \beta=100.12(3)^{\circ} \\
& \gamma=102.54(2)^{\circ}
\end{aligned}
$$

## Data collection

Stoe IPDS-II diffractometer $\varphi$ scans
Absorption correction: numerical

$$
(X-R E D 32 ; \text { Stoe \& Cie, 2005) }
$$

$$
\begin{aligned}
& V=1000.6(6) \AA^{3} \\
& Z=2 \\
& D_{x}=1.356 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }^{\mu=0.09 \mathrm{~mm}^{-1}} \\
& T=297(2) \mathrm{K} \\
& \text { Prism, colorless }
\end{aligned}
$$

$0.45 \times 0.4 \times 0.15 \mathrm{~mm}$

$$
T_{\min }=0.965, T_{\max }=0.987
$$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.103$
$S=1.07$
4198 reflections
360 parameters
All H -atom parameters refined

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| N2-H2B $\cdots \mathrm{N} 1$ | $0.896(20)$ | $2.125(19)$ | $2.641(2)$ | $115.8(14)$ |
| N3-H3B $\cdots \mathrm{N} 4$ | $0.920(19)$ | $2.187(14)$ | $2.669(2)$ | $111.8(13)$ |
| N3-H3B $\cdots$ O $^{\mathrm{i}}$ | $0.920(19)$ | $2.367(18)$ | $3.162(2)$ | $144.6(14)$ |

Symmetry code: (i) $-x,-y+1,-z$.
All H atoms were located in a difference synthesis and refined isotropically $[\mathrm{C}-\mathrm{H}=0.929(18)-1.009(17) \AA$ and $\mathrm{N}-\mathrm{H}=$ 0.896 (18)-0.919 (17) Å].

Data collection: $X$ - $A R E A$ (Stoe \& Cie, 2005); cell refinement: $X$ $A R E A$; data reduction: $X-R E D$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge Isfahan University of Technology and Shahid Beheshti University, for financial support.


Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level.


Figure 2
A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

## References

Albrecht, M. (2001). Chem. Rev. 101, 3457-3497.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Amirnasr, M., Schenk, K. J. \& Meghdadi, S. (2002). Inorg. Chim. Acta, 338, 1926.

Belda, O. \& Moberg, C. (2005). Coord. Chem. Rev. 249, 727-740.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Jubert, C., Mohamadou, A., Gerard, C., Brandes, S., Tabard, A. \& Barbier, J. P. (2002). J. Chem. Soc. Dalton Trans. pp. 2660-2669.

Lessmann, J. J. \& Horrocks, W. D. (2000). Inorg. Chem. 39, 3114-3124.
Meghdadi, S., Amirnasr, M., Langer, V. \& Zamanpoor, A. (2006). Can. J. Chem. 84, 971-978.
Piguet, C., Bernardinelli, G. \& Hopfgartner, G. (1997). Chem. Rev. 97, 20052062.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2005). $X$-AREA (Version 1.31), X-RED32 (Version 1.28b) and $X$ SHAPE (Version 2.05). Stoe \& Cie, Darmstadt, Germany.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

